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Abstract. The problem of representation of and reasoning with uncertain data and
knowledge is of importance in a broad range of disciplines, e.g. artificial intelligence
and expert systems, decision theory and information systems development. The
aim of this paper is to review the four developed uncertainty management systems
(UMS), which are in most common use: Bayes (Probability) Theory, Fuzzy Logic,
Certainty Factors Method and Dempster-Shafer Theory. The main features of each
method are presented along with their strengths and weaknesses. A number of
diferent sources of unceratinty are identified. The power of each of the four systems
in dealing with these different types of uncertainties is examined. In the second
part, a methodology for appropriate UMS selection is proposed. Selection is based
on types of uncertainty inherent in a given application.
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1. INTRODUCTION

Recent years have seen a growing necessity for including uncertain, imprecise
and incomplete data and relations between them in a broad range of domains. Un-
certainty is incorporated into all knowledge based system components: knowledge
base, data base, inference engine and user-interface. Dealing with uncertainty has
been debated widely in the literature. Still, it is evident that the management of
uncertainty presents complex and not yet fully understood problems. The term
uncertainty has been given a wide interpretation and appears to be used whenever
reasoning by strict logical implication is not considered possible.

The presence of uncertain information can be associated with various causes.
Most complex applications domains involve multiple types of uncertainty. Several
approaches for treating uncertainty hae been developed. The four most well-known
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and commonly used uncertainty management systems (UMS) are: (1) Bayes (prob-
ability) theory, (2) Fuzzy logic, (3) Certainty factors method and (4) Dempster-
Shafer theory. Each of these methods treats the uncertainty inherent in a problem
from a different point of view and each addresses the uncertain information in a

different way.

Development of knowledge based systems in many cases relies crucially upon
the method(s) of handling uncertainty used. The selection of the appropriate UMS
influences the system performance, efectivness and reliability. The objectives of the
work outlined in this paper are to examine some of the issues involved in managing
uncertainty and to assess the power of the four UMS in handling the various types
of unceratinty which occur in practice. This is done with a view to developing an
approach for selecting appropriate methods.

2. SOURCES OF UNCERTAINTY

The notion of uncertainty is very important in knowledge based systems. How-
ever, the nature of uncertainty is not yet well defined. Different sources of uncer-
tainty can be distinguished (Bonisone and Tong, 1985). The distinctions between
the types of uncertainty that arise even in simple systems are often subtle and diffi-
cult to detect. Interactions between them produce difficulties in their classification.

Although it is not possible to give an exhaustive list of all possible types of
uncertainty, some of the key ones that arise are now outlined:

(1) noisy data. Sources of noisy data are, for example, unreliable communication
channels and measuring devices with limited accuracy.

(2) lexical imprecision. Concepts and definitions used in description of domain
knowledge are often vague, ill-defined, imprecise and ambiguous.

(3) descriptive (formal, rule-representation) langugage. Ambiguities in natural
language are rarely clarified during translation to a descriptive language for
knowledge representation. Sometimes, input data and knowledge have to be
reduced into a more compact format and this leads to a loss of information.

(4) random processes. Stochastic processes are encounterd in some domains. Pre-

diction of future events, outcomes or future state of a system creates uncertain
data.

(5) incomplete data. All required data are not always available. Sources of in-
complete data are, for example, unsuccessful records of past events, unknown
interactions in systems and the high price of gathering all necessary infor-
mation. Inference in such case must draw a conclusion based on incomplete
data.

(6) contradictory dala. Inference based on contradictory data generates uncertain
conclusions.

(7) uncertain knowledge. Inference in knowledge based systems is very often based
on heuristics. It means that evidence and hypotheses are only partially corre-
lated, 1.e. causal links between them are not certain.
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(8) aggregation of rules from different knowledge sources and experts. Combining
the views of multiple experts into a consensus knowledge base can be difficult
and sometimes impossible. A system commonly attaches a weighting to each
expert and inferences the composite conclusion. However, no systematic way
of obtaining such weightings exists.

3. REVIEW OF FOUR UMS

For more than three hundred years scientists, philosophers, mathematicians
and statisticians have used the concept of probability to describe degrees of un-
certainty. Nevertheless, many doubts concerning the appropriateness of the use of
probability in knowledge based systems have arisen during the last few decades.
As a result several developed UMS have evolved (Mamdani, Efstathiou and Pang,
1985, Henkind and Harrison, 1988). Each of the four reviewed UMS has a different
perspective of uncertainty. Although, they all propose a numerical approach, the
numbers they attach to uncertainty have different meanings.

3.1. BAYES THEORY

A huge amount of theoretical results and experiences concerning the applica-
bility of probability theory in different fields of human knowledge has been accu-
mulated. Probability can be used in uncertainty modeling in different ways. For
example, Barr and Zehno (Barr and Zehno, 1983) present a classical probabil-
ity approach, and Weichselberger and Pohlmann (Weichselberger and Pohlmann,
1990) examine a new methodology for uncertainty which operates with probability
given by intervals and not by real numbers. In this paper the classical probability
approach based on Bayes rule is reviewed.

In Bayes theory uncertainty is viewed as probability, where probability can be
interpreted as a relative frequency, as a degree of belief or in some other manner.
Propagation of probabilities is performed through a system by Bayes rule:

p(E\H;) - p(H;)
o1 (P(E|H;) - p(H;))

p(Hi|E) =

where:

H;, j=1,... ,m are disjoint hypotheses,

E' is observed evidence,

p(H;) is a priori probability of hypothesis H;,

p(E|H;) is conditional probability of E given H;,

p(H;|E) is conditional probability of H; given E, i.e. revised probability of

hypothesis H;.

Hypotheses H;, 7 = 1,...,m are ranked according Lo posterior probabilities
calculated by Bayes rule.

Strengths of Bayes approach in treating uncertainty can be summarized as
follows:
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@ Method s based on the well-known probability theory axioms.
@ There are no restrictions concerning domains in which method can be applied.

Undesirable features of the method include:

® Method requires huge number of a priori and conditional probabilities for re-
vision of hypotheses probabilities. The consequence 18 computational costliness.
There are several approaches to Bayes method which introduce additional assump-
tions 1in order to reduce the number of input data required. However, those as-

sumptions are not always applicable.

m Determination of a priori probabilities is based on statistical analysis and re-
quires a massive amount of data. If data are not available, determination of a priori
probabilities is based on subjective estimations of experts.

m There is no adequate way of representing ignorance. One way of representing
incomplete information is to assign equal a priori probabilities to all hypothesis. In
that case, there is no possibility of make a distinction between ignorance and equal
a priori belief in all hypotheses.

m  Probability of hypothesis negation H depends on probability of hypothesis H ,
according to the very well-known axiom: p(H)+ p(—=H) = 1. This restriction is not
appropriate for cases where belief in negation of hypothesis should not be influenced
by belief in the hypothesis.

3.2. Fuzzy LogGic

Principles of fuzzy sets and fuzzy logic were layed by L. A. Zadeh, in 1965
(Zadeh, 1965). Since then, fuzzy sets and fuzzy logic have been developing and
applied to various fields (Klir and Folger, 1988).

Fuzzy set theory is the extension of conventional set theory. It eliminates the
sharp boundary which divides members of the set from non-members. Transition
from a member of a set to a non-member appears gradual. Mebership in a set is
expressed along a continuum from 0 to 1, where 0 means “not in the set”, 1 means
“In the set”.

The main features of fuzzy logic which are important in treating uncertainty
in knowledge based systems are now mentioned. Propositions truth values such
as true, very true, more-or-less true are represented by fuzzy sets, i.e. appropri-
ate membership functions. Fuzzy logic operates with fuzzy predicates (e.g. large
number, tall person, expensive system) and fuzzy quantifiers (e.g. as most, almost
all, almost always). An important concept in fuzzy logic is the linguistic variable.
Values and relationships between linguistic variables are described using imprecise
terms. Propositions can be qualified in three ways:

— truth qualification (for example: proposition p is very true),

— probability qualification (for example: proposition P 18 quite probable),
— possibility qualification (for example: proposition p is very possible).
Advantages of treating uncertainty by fuzzy logic include:
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m  Fuzzy logic is suitable for representing imprecise and ill-defined concepts of
knowledge.

m  Fuzzy logic is a very flexible theory. Operators and inference rules for fuzzy
sets can be defined in various ways.
Some disadvantages of fuzzy logic are:

® Construction of fuzzy set is context dependent. The function which repre-
sents a fuzzy set is determined by subjective evaluation, using statistical data or is
composed by standard functions.

m Choice of appropriate operator definitions for a given application may be a
problem because there is little guidance as to which definitions should be selected.

B There are many approaches in fuzzy reasoning, but it is not always clear which
approach should be used.

3.3. CERTAINTY FACTORS

Certainty factors method has been developed for medical diagnostic expert
system MYCIN (Shortliffe and Buchanan, 1984). The basic idea of this method is
based on confirmation theory. Certainty factors measure the confidence that can
be placed in any given hypothesis as a result of an observed evidence. A certainty
factor is the difference between two component measures:

CF[H, E] = MB[H, E] — MD[H, E]

where:

CF[H, E] is the certainty of the hypothesis H given evidence F,

MB[H, F] is a measure of belief in H given E|

MD[H, E] is a measure of disbelief in H given E.

Certainty factors can range from —1 (completely false) to +1 (completely true).
Zero reflects ignorance or balance of evidence for and against hypothesis.

Propagation of uncertainty 1s based on several combining rules. They define
the calculi for MB and MD in the case of incrementally acquired evidence, which can
be certain or uncertain and calculi for conjunction and disjunction of hypotheses.

Some positive features of certainty factors method are:

m Calculation of certainty factors is simple and efficient. Limitations of certainty
factors method include:

m Storing both values, MB and MD, is computationally expensive.

m Evaluation of a certainty factor for an hypothesis depends on the construc-
tion of rules. Logically equivalent rules constructed in different ways can produce
different resulting certainty factors for the same hypothesis.

@ Rules for certainty factor calculation are not based on a firm mathematical
theory.
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m Certainty factors are defined for a particular medical context. Definitions of
the rules for certainty factor calculations are influenced by the characteristics of
this medical domain. For example, one of the limitations is rapidity with which

measures of belief and disbelief converge to 1.

m  Single piece of negative evidence can overwhelm several pieces of positive ev-
idence or vice versa. Because of these properties certainty factors calculi 1s not
appropriate for many types of problems.

3.4. DEMPSTER-SHAFER THEORY

The theory was first set by A. Dempster in the 1960’s and subsequently ex-
tended by G. Shafer. Its relevance to the problem of treating uncertainty has been
recognized recently (Gordon and Shortliffe, 1984).

Investigation into applying Dempster-Shafer theory to knowledge based sys-
tems is motivated by two limitations of Bayes approach:

®m ignorance can not be represented explicitly,

m commitment of belief to hypothesis implies commitment of the remaining belief
to its negation.

The basic idea of Dempster-Shafer theory is in introducing the set of hypotheses
as a power set of all possible events. The set of all mutually exclusive and exhaustive
hypotheses is denoted by 2¢. The impact of each distinct piece of evidence on the
subsets of 8 is represented by a function called a basic probability assignment (bpa).
The quantity bpa(A) is a measure of that portion of the total belief commited
exactly to A, where A is an element of 2 and the total belief is 1. The bpa
function is a generalization of the traditional probability density function.

A belief function, denoted Bel, corresponding to a specific bpa, 1s a measure
of the total amount of belief in A:

Bel(A) = ) bpa(B) A,Be?2’

Given two belief functions based on two independent observations, but with the
same set of hypotheses, Dempster’s combination rule computes a new belief function
that represents the impact of the combined evidence. Strengths of Dempster-Shafer
theory include:

m Possibility of representing ignorance explicitly. Ignorance is represented by
assigning belief to a large subset of hypotheses.

m  Belief in a negation of an hypothesis is not constrained by belief in a hypothesis.

Weaknesses include:
m  Assumption that independent evidence is not applicable in every domain.

m  There 1s no mathematical justification for the correctness of Dempster’s com-
bination rule,
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® Method requires great amount of input data, i.e. a bpa has to be assigned to
every subset of possible events.

4. POWER OF EACH UMS

Although each of the UMS has its strong points, none of them can handle
all of the sources of uncertainty outlined above. The main disadvantage of each
UMS is that it provides a single framework for handling uncertainty without storing
information about the source and type of uncertainty under consideration. Table 1.
displays the power of each UMS in representing and reasoning with different types
of uncertainty.

The power of each UMS 1s estimated by three terms:

m Y (Yes) indicates high suitability of method for treating the particular type of
uncertainty.

@ M (Maybe) indicates that given type of uncertainty might be represented by
the particular UMS, but it usually requires either modification of the method or
further resarch and application in real problems. We shall explain this for two
cases.

1. Simple Bayes theory does not provide a way of representing contradic-
tory information. However, modification of Bayes method which 1s implemented
in the expert system PROSPECTOR is designed to handle inconsistency. The
PROSPECTOR method operates with two values: sufficiency factor LS and neces-
sity factor LN. Factor LS measures the support for a hypothesis. It is used in the
alteration of a priori odds of hypothesis if evidence 1s true. Factor LN measures
the support against an hypothesis and is used if evidence is untrue. This method
treats inconsistency of the form: the presence of evidence enhances the odds on
hypothesis (LS > 1), but the absence of evidence has no effect (LS = 1).

TABLE 1. Power of each UMS in treating different types of uncertainty

UMS

Sourca!. of - F uzzy Certainty Dempster-
uncertainty logic factors Shafer
1. noisy data M M M N
2. lexical imprecision N Y N Y
3. descriptive language M M M M
4. random processes b4 N M M
5. incomplete data M N N Y
6. contradictory data M N N Y
7. uncertain knowledge Y ¥ Y M
8. aggregation of experts M M M Y

2. This concerns the power of descriptive language used in fuzzy logic. PRUF
is a meaning representation language based on fuzzy logic. It translates imprecise
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premisses expressed in a natural or synthetic language into a form to which the
inference rules in fuzzy logic may be applied. PRUF considers representation of
common sense knowledge, which usually involves a lot of uncertainty, as a set of
dispositions. Disposition is a term which is often, but not necessarily, true. In fuzzy
logic, dispositions are represented via fuzzy quantifiers. However, PRUF procedures
require further formalization in order to be implemented in a real application.

m N (No) denotes method inappropriateness for management of given type of
uncertainty.

As one would expect, terms presented in the table are subjective in nature.
They also migh be expressed on a subjective scale from 0 to 10, where 0 marked com-
plete lack of appropriateness and 10 marked complete appropriateness of method
in dealing with the given type of uncertainty. Still, it is quite clear that each of
the UMS is suitable for reasoning with only small number of uncertainty types.
Also, some types of uncertainty are not successfully treated by developed UMS.
For example, combining rules which calculate a measure of uncertainty based on
different observations never takes into account the kind of mutual dependence of

the two observed facts.

5. METHODOLOGY OF UMS SELECTION

Complex real-world problems usually involve several types of uncertainty. For
researchers who design knowledge based systems the questions as to which method
of measuring uncertainty has to be addressed (Rothman, 1989).

We describe one approach for selecting UMS. It consists of two steps. The first
step 1s to generate the vector P;, i =1,...,8, which represents the problem under
consideration with respect to the 8 identified types of uncertainty. The presence
of each type of uncertainty is measured on the subjective scale from 0 to 10. The
second step evaluates the degrees of similarity between vector P and each column
of the matrix U, represented by Table 1. Evaluation can be performed in different
ways. The following two are proposed:

®  Spearman’s correlation test (Langley, 1968). Each vector of marks is converted
into a vector of rank values. Correlation factor is calculated according to the

formula:
n —n

j=1,...,4, di=P, - U
where:

n 18 the length of correlated vectors, i.e. the number of different types of un-
certainty (n = 8),

P is vector of ranked values which describes the given problem,

U_.j 1s vector of ranked values which describes the J-th UMS j=1,... 4.

®  Using minimum operator for each type of uncertainty. Apbmpriatene&s of each
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UMS for given problem is calculated by formula:

jo :Zmin(P;,Ufj), j:l,...,4.

1=l

The highest R2; corresponds to the most suitable UMS.

6. IMPLEMENTATION OF METHOD FOR UMS SELECTION

The approach described above for selecting appropriate UMS was implemented
using the CRYSTAL shell which runs under MS-DOS. The consultation with the
developed system unfolds in the following way:

(1) The system queries the user for information about the problem under consid-
eration. The user inputs subjective marks which describe the problem with
respect to the different types of uncertainty. A help facility which explains the
types of uncertainty is also available.

(2) The user selects the method of ranking.

(3) The system outputs ranking of the four UMS. On user request, system can
explain why the highest ranked method is the most appropriate for the given
problem.

The system has been successfully tested on 3 already developed knowledge
based systems; for example on SPARTA, an expert system for advising on stocks
of spare parts (Petrovi¢ and Petrovi¢, 1990), which incorporates fuzzy logic, on an
expert system for investment appraisal (Sweeney, 1991) which operates with cer-
tainty factors and on an expert system for statistical process control with reasoning
based on Bayes theorem.

In the following some details related to the example of spare parts inventory
and SPARTA expert system are presented. Spare parts inventory problems are a
very good example where the incompleteness, inconsistency, imprecise terms and
uncertainty always appear. Each problem descriptor is characterized by linguistic
parameters which have words as their values and an imprecise relation between
them. For example, the unit price of some part may be said to be very high,
high, moderate, low. Similarly, the essentiality of parts may be graded as high,
medium, low. Further, the stock of spares should, of course, be influenced by the
possibilities for providing additional spares on the market. Even the parameters
of the stochastic demand processes which depend on the random failures of the
components are very often sufficiently unknown. Therefore, the selection of an
appropriate UMS in knowledge-based systems for spare parts problem is of the
highest importance.

In accordance with the methodology proposed, it is necessary to assume the
presence of each type of uncertainty and the vector P should be deterimined. In
this case, let P be (7,10, 1, 7, 6, 1, 10, 1), which means that: (a) main types of
uncertainty in spare parts problems are lexical impression and uncertain knowledge,
(b) there are practically no descriptive uncertainties, contradictory data or necessity



B8 D. Petrovi¢ and E. T. Sweeney

to aggregate a rule from different knowledge sources or experts, (c¢) noisy data,
random processes and incomplete data appear significantly.

Spearman’s correlation test gives the following order of the four UMS: fuzzy
logic (R1; = 0.786), certainty factors (R13 = 0.263), Bayes theory (R1, = 0.129)
and Dempster-Shafer theory (R14; = —0.540). The following order of applicability
of methods is recommended using minimum operator. Fuzzy logic (R2; = 30),
Bayes theory (R2; = 28), Dempster-Shafer theory (R14 = 23) and certainty factors
(R23 = 20). It is interesting that both ranking methods recommend fuzzy logic as
the most appropriate UMS to apply in the given problem. This is just the UMS
that the SPARTA expert system used for treating uncertainty in solving the spare
parts problem.

7. FUTURE DIRECTIONS

The representation of and reasoning with uncertain data and knowledge 1s the
theme of various on-going projects. By way of conlusion to this paper two directions
for further reseach are suggested:

(1) The methodology for UMS selection outlined can be improved taking addi-
tional factors into account. For example, selection of UMS might also depend
on the importance of providing an explanation to the user. Very often UMS
do not reflect the way in which domain experts reasons under uncertain condi-
tions. In such cases, 1t 1s difficult to justify performed calculi for uncertainty.

(2) The UMS presented in the paper have proven their worth in several domains.
To enable the treatment of different types of uncertainty in a single framework,

It 1s necessary to develop hybrid UMS which will combine good features of
already developed UMS (Baldwin, 1991).
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